Optimal Control of Digital Hydraulic Drives Using Mixed-Integer Quadratic Programming

نویسندگان

  • Mateusz Sniegucki
  • Markus Gottfried
  • Uwe Klingauf
چکیده

Control of dynamical systems gets considerably harder with an increasing number of control variables. Especially when the control variables are restricted to integer values, the solution is of combinatorial complexity. An example of such systems are Digital Hydraulic Drives, where several cylinders contribute to the output torque independently. In this work we present an optimal control approach for torque control of Digital Hydraulic Drives using Mixed-Integer Quadratic Programming in a Model Predictive Control framework. The nonlinear behavior and discrete valued inputs resulting from the use of on-off valves, are accommodated in the control model using a Mixed Logical Dynamical System representation. With the presented approach, optimal switching sequences for the electrical valves are computed that produce the desired torque trajectory with fast tracking and minimal ripple, while keeping switching events at a minimum and respecting physical system constraints.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A conic quadratic model for supply chain network design under hub, capacity, delay and lost sale

In this paper, mathematical models are proposed for simultaneously modeling location and inventory control decisions in a four echelon supply chain network considering capacity. The echelons considered in this paper include suppliers, warehouses, hubs and retailers. The aim of the model is to minimize the location, transportation and inventory control costs. Hence, a non-linear mixed integer pr...

متن کامل

Use of Mixed-integer Formulations in Predictive Control Algorithms

Most industrial model predictive controllers (MPC) use the traditional two-layer structure developed in the early 1980’s, where the upper layer defines optimal steady-state targets for inputs and outputs, while the lower layer calculates the control moves that drive the system towards these steady-state targets. As a rule, both layers use continuous quadratic programming (QP) formulations to de...

متن کامل

Optimal Setting Sor Under Frequency Load Shedding Relays Using Mixed Integer Linear Programming

After occurrence of some disturbances in power system that causes the sever imbalance between generation power and electrical load, the power system frequency begins to decrease. To prevent power system frequency instability and stop the frequency decay below the power system allowable frequency limitation, load shedding schemes should be utilized by applying under frequency load shedding relay...

متن کامل

Sufficient global optimality conditions for general mixed integer nonlinear programming problems

‎In this paper‎, ‎some KKT type sufficient global optimality conditions‎ ‎for general mixed integer nonlinear programming problems with‎ ‎equality and inequality constraints (MINPP) are established‎. ‎We achieve‎ ‎this by employing a Lagrange function for MINPP‎. ‎In addition‎, ‎verifiable sufficient global optimality conditions for general mixed‎ ‎integer quadratic programming problems are der...

متن کامل

A Mixed Integer Programming Approach to Optimal Feeder Routing for Tree-Based Distribution System: A Case Study

A genetic algorithm is proposed to optimize a tree-structured power distribution network considering optimal cable sizing. For minimizing the total cost of the network, a mixed-integer programming model is presented determining the optimal sizes of cables with minimized location-allocation cost. For designing the distribution lines in a power network, the primary factors must be considered as m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013